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FOREWORD I

As a part of the on-going program in "Decision Control Models

in Operations Research," Mr. Douglas Blazer and Ms. Marilyn

McClelland have made an initial study of the economic impact of

removing large demands in the determination of an inventory re-

plenishment policy. They treat the multi-period case with linear

costs and fixed leadtime; a set-up cost is not included in this

paper. Mr. Blazer and Ms. McClelland derive an optimal single-

number critical policy when large demand is filtered out. They

show how to determine optimally the filter level itself. The paper

provides a simple computing algorithm when the demand distribution

is negative exponential. Other related reports dealing with this

research program are given on the following pages.
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AN INVENTORY MODEL FOR SPECIAL HANDLING

OF EXTREME VALUE DEMANDS

Douglas J. Blazer and Marilyn K. McClelland~

-Abstract-

We develop a stationary, discrete-time inventory model with a

point -r. such that any demands t6hat exceed the value of T are

not filled from existing stock. We show under what conditions it

is economically advantageous to use this model and provide some

numerical results. We then show how to find an optimal value for

1Schol of Business Administration, The University of North
Caroline. at Chapel Hill.
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1. INTRODUCTION

Usually stochastic inventory models postulate a probability

distribution of demand that makes no qualitative distinction re-

garding the magnitude of demand. But in real life, a relatively

large demand may be attributable to an identifiable type of custo-

mer or peculiar event. In such circumstances, it may be possible

to anticipate (better forecast) the demand or to handle the demand

specially when it occurs. Further, sometimes a customer that de-

mands a large quantity is unwilling to accept a partial shipment

when insufficient ^-'oply is on hand to fill the entire order. In

this paper we analyze when it is economically advantageous to

treat large demands (extreme values) differently from others. We

formulate a model in which we need not satisfy relatively large

demands out of the stock held to meet smaller demands.

1.1 The Model

To simplify the analysis in this initial investigation of the

topic, we assume a stationary, discrete-time model, where ý'(q) ~

is the distribution function of demand q in each period (say,3

a week), and demand is independently distributed among periods.

Let idesignate the smallest value of demand that we consider to

be extreme. Then I - 4)(T) is the probability that we observe a

large deman~d during a period. (In a real situation, more than one

customer may place an order in a period, so that q would be the

corresponding sum of all customer orders. Then it would be more

A
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appropriate to define an extreme value in terms of an Individual

customer order. In this paper, however, we avoid the additional

complication.)

We examine below the familiar single-critical-number policy

model with stationary linear costs. We consider the case of an

infinite time horizon; by a trivial alteration of the value of theI discount factor, we can extend the analysis to the newsboy problem

(single time period).

Let c be the unit cost of each item purchased from a vendor

at the start of a period. Assume there is no initial inventory in

the first period. Let h be the holding cost per unit of each

item in inventory at the end of a period, and 7T be the penalty

cost per unit of each item of unsatisfied demand at the end of a

period. We postulate complete backlogging of unfilled regular de-

mand. Assume that the replenishment leadtime is 0 and that the

one-period discount factor is o : 1. Suppose that the value of

T is specified. Later we examine how to determine T to minimize

expected total cost per period, where total cost then includes the

expense due to specially handling at extreme demand.

It is well known [1) that an optimal critical number S can

be found by minimizing

L(y) F (l-c)cy + ýh(y-q)dý(q) + 5,(q-y)dU(q) + ShydO(q) (1)
y

with respect to y. Note that the last integral in (1) represents

the expected cost when demand exceeds r and therefore is not

netted out of y. We assume that in minimizing L(y) we only
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need to consider y i ', since it would be uneconomical to stock

more than the largest value that will be filled from that stock.

Mievelin y * S wiherespec0ti the smaillest anuotmber suchkha

Miniizin yS) wihere Spect0i toe smayielst anuotmalr suhtock

and

R -I 0l-00c (3)

Thus given a value of T. an optimal critical number is analogous

to that for the usual infinite horizon model [2), where here an

extreme value for demand is treated as if it were 0.

In Section 2.1 we modify the formulation by adding the costs

associated with treating an extreme demand specially. But before

doing so, we examine a necessary and sufficient condition for re-

alizing a reduction in expected holding and penalty costs when T

is such that 11(T) < 1, that is, when large demands are removed

and treated separately. We examine when the decrease in expected

penalty cost is greater than the increase in expected holding cost

arising from the special treatment of extreme value demand.

Let S~ be the smallest number such that

CO R ,(4)

so that S0 is an optimal critical numbe- .ven extreme values are

not removed. Then the chng in costs due to eliminating extreme

value demand is
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0SS

+'S (- S-q)d4(q) ~- S~dt(q

I. r

For the case where (2) is a strict equality, we have

S (SO-q)d&(q) - S -qdý) ~Sd4(q)

so So

S Sd'O(q) S Sqd(q) - d4(q) + SdO(q) + Sqdl)(q) , (6)
000

and, from (2) and (4), we can reduce (6) to

So

R(S-S S qd,'(q). (7)
S

Similarly, we have

~(q-S 0 )dý(q) S (q-S)dl)(q)I

-S)jd~pq) + S qd,,'(q) -SSONq) + S'1

and from (2) and (4)

O(LNq) =(() 1-R (9)

so S

xi0
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Then (8) becomes
So i

(S-So)(l-R) - Sqd4,(q) + SqdO(q) , (10)
S T

and, substituting (7) and (10) into (5), we get that the change in

costs is

SoS0

-(h+r) . qdO(q) + irqdO(q) (11)
S T

Thus expected holding and penalty costs per period decrease due to

the elimination of extreme demand if and only if (11) is greater

than 0, that is,

S •qd$(q)

SS
7Th-- > 00 (12)

S qdt(q)

1.2 Numerical Results j

Here we illustrate examples where savings in expected holding V
and penalty costs occur. Consider the undiscounted model where

ct = . We calculate L(y) in (1) for y = S and y= S0, as

determined by (2) and (4), whore we assume that 4,(q) is either

a normal or a uniform distribution. We vary the variance-to-mean

ratio and the mean demand to demonstrate conditions where specially

treating extreme value demand reduces expected holding and penalty

costs. We show in Table I the percentage reduction or increase in

expected cost. We let R .80, so that the ratio of n to h

....................
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TABLE I

Total Holding and Penalty Costs with Special Handling L 100%
Total Holding and Penalty Costs without Special Handling

Assume R= .8, CT() -. 85, o= 1

Variance- Mean Demand
to-Mean

Distribution Ratio 10 20 30 J

Normal 1 97,%' 112% 122%

3 95% 100%

5 93% Z

Uni form 1 108. 1260% 1741,

is 4:1. Also, we let T be such that 1 - ( .15. Table I

shows that costs decrease as mean demand gets sufficiently small,

and the variance-to-mean ratio gets sufficiently large. Observe

from (12) that special handling of extreme value demands also

saves costs when R is sufficiently large.

_1 :21
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2. DETERMINATION OF OPTIMAL POLICIES

In this section, we add to (1) a special penalty and a special

order cost attributable to the extreme-value demands. We then de-

termine values of T and a stock level that minimize total expected

costs. We show a method for finding optimal values of T and a

stock level for the negative exponential distribution.

2.1 Special Penalty and Special Order Cost

Let wT be a special penalty cost per unit of extreme value

demand and k' be a fixed special order cost. The expected cc:t

function analogous to (1) becomes

y 00
L*(y,T) = (l-c)cy + ýh(y-q)d&(q) + Shydt(q)

00c

+ SSr(q-y)do(q) + IT'qd4(q) + 5k'df(q) (13)
y

Note that if ' = 7T, then (13) becomes

L*(y,T) = (-cx)cy + h(y-q)df(q) + S(q-y)dt(q)
y

+'j+ yd0(q) + Shydo(q) + $k' d(q) (14)
T T T

which is the expected cost model without special handling of ex-

treme value demands plus an additional cost in the bracketed

terms that decreases as T approaches infinity. Thus for

2! w 7, it is not economically advantageous to special handle

extreme value demands.

• • ,, • ___



Now let S be a value for y that minimizes L*(y,T) for

a fixed value of T. Then for an optimum y for a given T, we

denote the expected cost in (13) as

L*(S S,1 G(-r) . (15)

An optimum value of T is found by setting G'(T) = 0.

Note from (2) that ST is the optimal stock level for a

value T, where S• 2 0 is the smallest number such that

~ ~4(T) -h + (l-ei)c (6,•,,• (STI a € • (16)J
• i " T+ h "T T+

Differentiating (16) as a strict equality with respect to r yields

P(S T )S T p(T) , (17)

I where p(.) is the probability density of demand. Minimizing

G(T) with respect to T and using (16) yields

(h+Tr)S + k'
T for rT> ' (18) i

Equations (16) as a strict equality and (18) can be solved

numerically to yield a value for T and S Tthat minimize total

expected costs.

2.2 Example of Finding an ODtimal ._

We now show an algorithm for finding optimal values of T

and S where o(q) is a negative exponential distribution,
T

1 I, and only the special penalty cost r' for extreme value

demands is included. From (2) as an equality and (18), we have



T ~-[O(S, + (19)

(h+'n0) Sr
"T= TT-T' (20)

We let

P = 7 (21)

where P is strictly greater than 0 from (14) and let X be

the parameter in the negative exponential distribution. Then,

substituting (20) into (19) we get

T In e-, + f .)(22)

Starting at Tr = /X on the right of (22), successive values for

T are computed until we find a value T* that solves (22). The

expected cost for T* is

[e (S, [+I/X)(h+n -e'X[*(T*+l/X)(7-•r) - h/X . (23)

II
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